3.66 \(\int \frac{a+b \csc ^{-1}(c x)}{(d+e x)^{3/2}} \, dx\)

Optimal. Leaf size=119 \[ \frac{4 b \sqrt{1-c^2 x^2} \sqrt{\frac{c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{c e x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{d+e x}}-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}} \]

[Out]

(-2*(a + b*ArcCsc[c*x]))/(e*Sqrt[d + e*x]) + (4*b*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticPi[2
, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(c*e*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.22537, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {5227, 1574, 933, 168, 538, 537} \[ \frac{4 b \sqrt{1-c^2 x^2} \sqrt{\frac{c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{c e x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{d+e x}}-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsc[c*x])/(d + e*x)^(3/2),x]

[Out]

(-2*(a + b*ArcCsc[c*x]))/(e*Sqrt[d + e*x]) + (4*b*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticPi[2
, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(c*e*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x])

Rule 5227

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + b
*ArcCsc[c*x]))/(e*(m + 1)), x] + Dist[b/(c*e*(m + 1)), Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rule 1574

Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Dist[(x^(2*n*Fr
acPart[p])*(a + c/x^(2*n))^FracPart[p])/(c + a*x^(2*n))^FracPart[p], Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x^
(2*n))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] &&  !IntegerQ[p] &&  !IntegerQ[q] &&
PosQ[n]

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{a+b \csc ^{-1}(c x)}{(d+e x)^{3/2}} \, dx &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}-\frac{(2 b) \int \frac{1}{\sqrt{1-\frac{1}{c^2 x^2}} x^2 \sqrt{d+e x}} \, dx}{c e}\\ &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}-\frac{\left (2 b \sqrt{-\frac{1}{c^2}+x^2}\right ) \int \frac{1}{x \sqrt{d+e x} \sqrt{-\frac{1}{c^2}+x^2}} \, dx}{c e \sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}-\frac{\left (2 b \sqrt{1-c^2 x^2}\right ) \int \frac{1}{x \sqrt{1-c x} \sqrt{1+c x} \sqrt{d+e x}} \, dx}{c e \sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}+\frac{\left (4 b \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{d+\frac{e}{c}-\frac{e x^2}{c}}} \, dx,x,\sqrt{1-c x}\right )}{c e \sqrt{1-\frac{1}{c^2 x^2}} x}\\ &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}+\frac{\left (4 b \sqrt{\frac{c (d+e x)}{c d+e}} \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{1-\frac{e x^2}{c \left (d+\frac{e}{c}\right )}}} \, dx,x,\sqrt{1-c x}\right )}{c e \sqrt{1-\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ &=-\frac{2 \left (a+b \csc ^{-1}(c x)\right )}{e \sqrt{d+e x}}+\frac{4 b \sqrt{\frac{c (d+e x)}{c d+e}} \sqrt{1-c^2 x^2} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )}{c e \sqrt{1-\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ \end{align*}

Mathematica [A]  time = 0.20256, size = 124, normalized size = 1.04 \[ \frac{4 b c x \sqrt{1-\frac{1}{c^2 x^2}} \sqrt{1-c^2 x^2} \sqrt{\frac{c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-c x}}{\sqrt{2}}\right )|\frac{2 e}{c d+e}\right )-2 \left (c^2 x^2-1\right ) \left (a+b \csc ^{-1}(c x)\right )}{e \left (c^2 x^2-1\right ) \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsc[c*x])/(d + e*x)^(3/2),x]

[Out]

(-2*(-1 + c^2*x^2)*(a + b*ArcCsc[c*x]) + 4*b*c*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 -
c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(e*Sqrt[d + e*x]*(-1 + c^2*x^2))

________________________________________________________________________________________

Maple [A]  time = 0.27, size = 217, normalized size = 1.8 \begin{align*} 2\,{\frac{1}{e} \left ( -{\frac{a}{\sqrt{ex+d}}}+b \left ( -{\frac{{\rm arccsc} \left (cx\right )}{\sqrt{ex+d}}}+2\,{\frac{1}{cdx}\sqrt{-{\frac{ \left ( ex+d \right ) c-dc+e}{dc-e}}}\sqrt{-{\frac{ \left ( ex+d \right ) c-dc-e}{dc+e}}}{\it EllipticPi} \left ( \sqrt{ex+d}\sqrt{{\frac{c}{dc-e}}},{\frac{dc-e}{dc}},{\sqrt{{\frac{c}{dc+e}}}{\frac{1}{\sqrt{{\frac{c}{dc-e}}}}}} \right ){\frac{1}{\sqrt{{\frac{{c}^{2} \left ( ex+d \right ) ^{2}-2\,d{c}^{2} \left ( ex+d \right ) +{c}^{2}{d}^{2}-{e}^{2}}{{c}^{2}{e}^{2}{x}^{2}}}}}}{\frac{1}{\sqrt{{\frac{c}{dc-e}}}}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsc(c*x))/(e*x+d)^(3/2),x)

[Out]

2/e*(-1/(e*x+d)^(1/2)*a+b*(-1/(e*x+d)^(1/2)*arccsc(c*x)+2/c/((c^2*(e*x+d)^2-2*d*c^2*(e*x+d)+c^2*d^2-e^2)/c^2/e
^2/x^2)^(1/2)/x/d/(c/(c*d-e))^(1/2)*(-((e*x+d)*c-d*c+e)/(c*d-e))^(1/2)*(-((e*x+d)*c-d*c-e)/(c*d+e))^(1/2)*Elli
pticPi((e*x+d)^(1/2)*(c/(c*d-e))^(1/2),1/c*(c*d-e)/d,(c/(c*d+e))^(1/2)/(c/(c*d-e))^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x + d}{\left (b \operatorname{arccsc}\left (c x\right ) + a\right )}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x + d)*(b*arccsc(c*x) + a)/(e^2*x^2 + 2*d*e*x + d^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsc(c*x))/(e*x+d)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arccsc}\left (c x\right ) + a}{{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)/(e*x + d)^(3/2), x)